Plane crash map Locate crash sites, wreckage and more

N107SB accident description

Arizona map... Arizona list
Crash location 33.420556°N, 112.686111°W
Nearest city Buckeye, AZ
33.370320°N, 112.583777°W
6.8 miles away
Tail number N107SB
Accident date 16 Feb 2016
Aircraft type Evolution Revo
Additional details: None

NTSB Factual Report

***This report was modified on May 12, 2017. Please see the docket for this accident to view the original report.***

HISTORY OF FLIGHT

On February 16, 2016, about 1452 Mountain standard time, an Evolution Revo special light sport weight-shift control "trike," N107SB, impacted terrain shortly after takeoff from Buckeye Municipal airport (BXK), Buckeye, Arizona. The pilot, who was the sole person on board, received fatal injuries, and the aircraft was substantially damaged. The personal flight was conducted under the provisions of Title 14 Code of Federal Regulations Part 91. Visual meteorological conditions prevailed, and no Federal Aviation Administration (FAA) flight plan was filed for the flight.

According to the owner of the aircraft, the pilot was referred to him by the Evolution president, because the pilot was interested in purchasing a Revo, and he was planning a trip to the Phoenix area. The pilot made contact with the owner, and appealed to him to be allowed to fly the aircraft. Based on the pilot's credentials, the owner eventually agreed to let the pilot fly the aircraft. The evening prior to the accident, the owner (acting as pilot in command) took the accident pilot (as a passenger) on an uneventful flight in the aircraft. On the day of the accident, both individuals conducted the preflight inspection, with no anomalies noted.

The pilot reportedly planned to conduct a solo flight, and then return for an unspecified passenger. According to the owner, the takeoff roll on runway 17 was normal, but shortly after breaking ground, the wing went to the "full flare" position, which he explained to mean that the wing was at the full wing leading edge up position. The wing remained in that position, and the aircraft climbed rapidly and steeply, but then appeared to stall, at an altitude estimated by witnesses to be less than about 100 above ground level. The aircraft then turned, rolled, to the right, and descended rapidly to the ground in a nose-down attitude. The aircraft was equipped with a Ballistic Recovery System brand rocket propelled parachute, but the device was not activated by the pilot.

The wreckage was examined on site by FAA inspectors, and was recovered to a secure location for subsequent examination.

PERSONNEL INFORMATION

Certificate Information

According to FAA records, the pilot held a commercial certificate with airplane single engine land, multi-engine land, and instrument airplane ratings, and "sport endorsements" for gyroplane and powered parachutes. He also held flight instructor certificate with airplane single- and multi-engine land, and instrument airplane ratings, and "sport endorsements" for gyroplane and powered parachutes. The pilot's most recent valid FAA medical certificate was obtained in 2004. On that medical certificate application, the pilot reported a total flight experience of 4,500 hours.

Weight Shift Control (WSC) Aircraft Experience

The pilot obtained all of his weight shift control (WSC) experience and instruction in the two weeks prior to the accident. According to the certified flight instructor (CFI) who provided nearly all that instruction, the pilot was referred to him by the owner of the accident aircraft. The pilot first met and flew with the CFI on February 6, 2016 at BXK; the CFI had flown his Northwing Navajo WSC aircraft to BXK for an airshow/exhibit there. The following week, the pilot traveled to Boulder City, Nevada to complete his training, and obtain his WSC pilot- and instructor- certificates.

The pilot accrued a total time of 9.5 hours with that CFI, and then 2 hours with another CFI, before taking his flight checks with the original CFI on February 12, 2016. At the completion of his WSC pilot and instructor flight checks, the pilot had accrued a total WSC aircraft flight experience time of 13.5 hours. All flights were conducted in the Navajo, and none of the flights were solo. Both CFIs were complementary regarding the pilot's skills.

Because the pilot was interested in purchasing a Revo, on multiple occasions he asked the CFI about the Revo. The CFI strongly discouraged the pilot from flying a Revo until he had more WSC aircraft experience, and then also obtained specific instruction in that aircraft. The CFI advised the pilot that he (the pilot) was "not qualified" to fly the Revo at this point in his experience/training level – his primary reason was that the Revo was a much more "sensitive" aircraft than the Navajo.

AIRCRAFT INFORMATION

FAA information indicated that the aircraft was manufactured in 2015, and was equipped with a Rotax 912-IS series engine. The aircraft was purchased new by the current owner in early 2015. He reported that the airframe and engine had each accumulated a total time in service of about 69 hours.

The two primary elements of the aircraft were the carriage and the wing. The carriage was a steel tube assembly with composite fairings. The instrument panel, tandem seats, landing gear and engine were all integral to the carriage. The primary pilot station was the front seat; the rear seat had no instruments and access to only a few controls. The primary flight controls consisted of horizontal, transversely-mounted control bar situated just ahead of the pilot, and attached to the wing. The pitch and roll/yaw control inputs were exactly the reverse of those of conventional airplanes; pushing the control bar forward would climb the WSC aircraft (and vice versa) while moving the control bar left would result in the WSC aircraft turning to the right (and vice versa).

The engine was situated behind the rear seat in a pusher-type arrangement. The engine was electronically controlled and fuel-injected. The installed electronic engine control unit (ECU) was equipped to record certain engine parameters during operation. The engine drove a 2 blade composite propeller, and its rated output was 100 hp.

The wing was a fabric-covered aluminum tube assembly which attached to the carriage by a mast. The mast attached behind the rear seat into a "pivot block" which allowed the wing to change its pitch orientation with regard to the carriage. On the ground, the wing was free to move through a range of pitch and roll attitudes, while the carriage remained in a stationary attitude. In flight, the carriage was suspended by the mast, and stabilized at an attitude determined by center of gravity and airloads. The wing attitude and angle of attack could be varied by the pilot's inputs on the control bar.

The aircraft was equipped with a pitch trim system which was used for cruise flight, in order to neutralize the forces required by the pilot on the control bar. There was no means to visually detect the trim setting, and there was no specific trim setting or range for takeoff or landing.

METEOROLOGICAL INFORMATION

The BXK 1455 automated weather observation included winds from 130 degrees at 8 knots, visibility 10 miles, clear skies, temperature 27 degrees C, dew point minus 2 degrees C, and an altimeter setting of 29.93 inches of mercury.

AIRPORT INFORMATION

BXK consisted of a single paved runway that measured 5,500 feet by 75 feet. The runway was designated as 17/35. The airport was located in the desert, and the unpaved areas consisted of hard-packed earth and sparse low vegetation. Airport elevation was listed as 1,032 feet above mean sea level. The airport ramp was situated about 3,200 feet from the runway 17 threshold, and about 750 feet from the runway centerline.

FLIGHT RECORDERS

EFIS SD Card

The aircraft was equipped with an MGL brand "Stratomaster Xtreme" electronic flight instrumentation system (EFIS), which had data recording capability. Recording of flight data, including parameters and time intervals, were user-defined. If and when the device was configured by the user to record flight data, the data would be stored on a compact SD card which inserted into the face of the device.

Post accident discussions with the aircraft owner indicated that he was unaware of the EFIS device's recording capabilities, and therefore had not modified any of the recording settings. The SD card was recovered intact. Separate readout efforts by the NTSB and MGL Avionics indicated that no flight data had been recorded.

Engine Control Unit (ECU)

The ECU was removed from the aircraft, and was observed to be physically intact. It was sent to the NTSB Recorders laboratory in Washington, DC for readout. The data from the accident flight was successfully downloaded.

The device recorded 18 engine-related parameters at a rate of 10 samples per second, and ambient pressure at a rate of 1 sample per second. The accident flight data began at engine start, and terminated with what appeared consistent with impact and engine stoppage. The data file extended from system time 102:30:21 (hhh:mm:ss) to 102:39:28. The engine operated in the idle range until about 102:36:54, when rpm increases and data dropouts (due to ECU channel-switching) consistent with an engine runup were observed.

About 102:39:12, the rpm increased and stabilized at its maximum value, consistent with the takeoff roll and climb. The data ended about 16 seconds later. The parameter values were all consistent with normal engine operation throughout the entire data file, and the engine remained at full rpm for the takeoff and flight, until about 0.2 seconds prior to the end of the data.

The ambient pressure values were utilized to derive aircraft altitude values. The data indicated that the aircraft climbed rapidly in the first few seconds, and reached a maximum height of about 80 feet above the runway.

WRECKAGE AND IMPACT INFORMATION

On-scene documentation provided by the Buckeye Police Department and the airport manager indicated that the aircraft left a series of near-continuous ground scars, first in the form of a tire skid mark on the runway, followed by earth-scoring and gouging, to the final location of the wreckage. The overall length of these ground scars was about 340 feet, and their track was oriented approximately 20 degrees divergent right (west) from the runway 17 alignment.

The first tire skid mark began about 25 feet west of the runway centerline, and terminated near the runway edge. Ground scars, at first consistent with the aircraft wingtips, and further along the path, consistent with other portions of the aircraft, continued to the main wreckage. The main wreckage came to rest in an unpaved region of level desert terrain, about 150 feet east of the runway centerline, and about 1,500 feet from the starting point of the takeoff roll. The wreckage was situated about 2,000 feet from the airport ramp where the witnesses were located. The carriage was found on its left side, oriented approximately north, but was significantly disrupted. The wing assembly was fracture-separated from, but adjacent to and partially covering, the carriage. The wing structure was also significantly disrupted.

Personnel from the FAA and NTSB examined the recovered airframe and engine on March 9, 2016 at the facilities of Air Transport in Phoenix, Arizona. The owner was in attendance for a portion of the period to provide additional information as requested.

The aircraft was in two major pieces (wing assembly and carriage), as well as about two dozen fracture-separated parts. Those parts included windscreen, carriage fairing, propeller and other component fragments. There was no evidence of fire, either pre- or post-impact. The carriage damage was consistent with a front and left-side ground impact, with some fore-aft scraping.

The instrument panel was dislodged from its mounts, and severely deformed, but all 3 instruments remained affixed in the panel. The rocket powered ballistic parachute was still in its case, and the extraction rocket had not been fired. The front restraint harness belts had been cut to extract the pilot.

The engine did not exhibit any signs of any pre-impact failures, and damage was limited to some minor muffler crush and displacement from impact. The four top spark plugs were pulled, and the engine rotated freely by hand; thumb compressions were observed on all four cylinders. The bodies and electrodes of the four spark plugs all were unremarkable. The ECU was removed and retained for data download. Both composite propeller blades were fracture-separated at their approximate 18 inch span locations, and propeller blade damage was consistent with engine power at impact.

The main mast tube of the wing assembly had fracture-separated from the carriage at its attach point to the mast mount block. The left front wing spar was fracture-separated at about its 2 foot span location, and the right front spar was fracture-separated about 5 feet inboard of the tip. The auxiliary/jury spar aft of the main spar was also fracture-separated, while the wing fabric was intact exclusive of impact damage

An unidentified/unassigned quick-release pin was found inside the left wing, but the investigation was unable to determine its origin. The aft actuating tube assembly of the pitch trim mechanism was fracture-separated from the travel block of the main housing jackscrew. On disassembly and inspection, it was revealed that the threads of the aluminum actuating tube had pulled aft over the jackscrew nylon travel block threads. The damage was not consistent with normal system capability, and was attributed to impact loads and structural deformation.

No evidence of any pre-impact mechanical malfunction was noted during the examination of the recovered airframe and engine.

MEDICAL AND PATHOLOGICAL INFORMATION

The pilot's most recent valid FAA medical certificate was obtained in 2004, and was expired by the time of the accident flight. In February 2005, the pilot was seriously injured in an accident where he was piloting a Cessna 177. That accident was attributed to a complete loss of power due to oil starvation/exhaustion. The pilot's girlfriend reported that the initial injuries and resulting debilitation had delayed the pilot's decision to apply for another FAA medical certificate and resume flying certificated airplanes, and that the pilot continued to suffer pain from some of those injuries. Therefore, at the time of his weight shift training and the accident, the pilot was operating in accordance the light sport rules, which do not require a valid FAA medical certificate.

The Maricopa County (Arizona) Office of the Medical Examiner autopsy report indicated that the cause of death was "multiple blunt force trauma," and that alcohol and drug test results were all negative.

Review of the pilot's previous medical history by an FAA Civil Aeromedical Institute (CAMI) physician indicated that the pilot reported no significant medical concerns, and that his FAA medical examiner did not identify any significant conditions during the pilot's 2004 physical examination. The CAMI physician's review also noted that the autopsy "revealed some moderately severe cardiovascular disease but no evidence of thromboemboli or a recent or previous heart attack," and that "there were no significant natural disease findings that could point towards a sudden incapacitating event."

CAMI conducted forensic toxicology examinations on specimens from the pilot, and reported that no carbon monoxide, cyanide, ethanol, or any screened drugs were detected.

ADDITIONAL INFORMATION

Revo Flight Characteristics

The manufacturer of the aircraft agreed with the two CFI assessments that the Revo and Navajo had dramatically different flight characteristics, and that the Revo performance characteristics were not well suited for beginner level WSC pilots.

The pilot's primary CFI noted that the Revo is a very high performance aircraft, and that a first flight in that aircraft, particularly a solo flight, would be very different from the pilot's prior dual experience in the lower-performance Navajo.

Learning Primacy

According to the Aviation Instructor Handbook (AIH, FAA-8083-9), the first information or behavior learned by a person "often creates a strong, almost unshakable, impression." This phenomenon is called "primacy," and the AIH states that such primacy of learning and behaviors "lay the foundation for all that is to follow." The A

NTSB Probable Cause

The pilot's improper decision to operate the high-performance aircraft despite warnings from a flight instructor that he did not have the experience to operate the aircraft that had different and more sensitive handling characteristics than the low-performance weight-shift-control aircraft that he was used to flying, which led to his improper control inputs and resulted in his loss of aircraft control and ground impact immediately after takeoff.

© 2009-2020 Lee C. Baker / Crosswind Software, LLC. For informational purposes only.